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Abstract
The comparison of proteins as three-dimensional coordinate structure is called the structural

alignment. Many effective algorithms have been developed and utilized which are based on dynamic
programming and root square mean deviation. The results of these methods are evaluated for average
of square distances between pairs of Cα atoms. In consequence, the most important sites in functions
of proteins can be ignored in the obtained alignments. Moreover, they are only searching local
minima. In this thesis, a novel alignment method is proposed that is on the basis of the Real-coded
Genetic Algorithm : Genetic Structural Alignment(GSA). GSA can align much more importance
on conserved and active sites with a effective fitness function. The results of two experiments are
described and shown, in regard to GA and GSA. It is reported that GSA found a novel alignment
result on Ca2+-binding proteins. Finally, an idea for the multiple structural alignment by suggested
GSA is also described.

1 Introduction

The amino acid is a molecule made of hydrogen,
carbon, nitrogen, oxygen, and other atoms. These
amino acids are connected into a chain by pep-
tide bonds. When the amino acid group (NH2) of
one amino acid and the carboxyl group (COOH)
of another amino acid react, a water molecule is
removed and the two amino acids are connected.
This connection is called a peptide bond and pro-
tein has a polypeptide bond in which n amino
acids are connected together by peptide bond.
There exist 20 kinds of side chains in all organ-
isms, illustrated as Rn in Figure 1. The side chains
identify the component amino acids. The 20 amino
acid side chains are organized by the general prop-
erties and chemical structures. These side chains
fall into the following chemical classes, i.e. six
aliphatic, three aromatic, two sulfur-containing,
two alcohols, three bases, two acids, and two
amides.

The part linked to the side chain is a Cα atom.
The Cα atom chain makes every protein have
a backbone. A backbone can be used to ex-
plain a protein structure. Proteins can be folded

 
 

Figure 1: Polypeptide Chain

in three-dimensions because N-Cα bond and Cα-
C bond may rotate. These rotation angles are
known as φ and ψ. These angles can make lo-
cal conformation regularities in protein structure,
e.g. α-helix, β-strand. There exist four funda-
mental levels of structure, which are called pri-
mary, secondary, tertiary, and quaternary struc-
tures. Primary structure is the sequence of co-
valently linked amino acid residues. Secondary
structure is the local conformation. The combi-
nation of secondary structures is called tertiary
structure. Also, quaternary structure is the as-
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sociate of two or more tertiary structures. Sec-
ondary structure or higher level structures fold
with interaction between primary structures. For
these reasons, many different proteins could exist
in nature. However, we know from previous stud-
ies that three-dimensional structures are strongly
maintained rather than their primary structures
in protein evolution [Chothia 86, Rozwarski 94,
Tsukihara 82]. That is, although the amino acids
were mutated, the backbone structure of protein
would be conserved. In other words, we can pre-
dict evolutionary similarities in sets of proteins, or
the most functionally important sites, through the
comparison of these structures.

The sequence alignment is a basic method of
detecting phylogenetic relationships in molecular
biology. Since dynamic programming approach
(DP-matching) was proposed [Needleman 70],
many different algorithms have been devel-
oped and utilized [Alexandrov 92, Altschul 90,
Chellapilla 99, Gotoh 82, Taylor 87, Zhu 98]. Two
fundamental purposes are achieved by the se-
quence alignment, i.e. an estimate of the evolu-
tionary relation and a recognition of the functional
sites in those sequences.

It is limited to the similarities of primary struc-
ture. On the other hands, a systematic com-
parison of proteins as a three-dimensional struc-
ture is called the structural alignment. The re-
sults of the structural alignment are extended to
structure similarities of high levels, and hence one
of the most important techniques of all. Thus
a number of effective and rapid algorithms have
been proposed [Akutsu 95, Gerstein 96, Holm 93,
Madej 95, Rossmann 76, Taylor 89]. In the most
existing algorithms, the sequence alignment meth-
ods are based on and extend them. They are also
adopted the root mean square deviation (RMSd),
the Monte Carlo method, distance matrices, and
so on. However, it is most likely that they have
two problems. Firstly, they are all local searches,
i.e. the possible transfer positions and orientations
can be ignored in the existing methods.

Secondly, the results obtained by these methods
are evaluated for average of square distances be-
tween equivalent Cα atoms. In consequence, the
obtained alignments could be failed in biological
active sites.

This thesis proposes a novel algorithm, called
GSA : Genetic Structural Alignment, to the struc-
tural alignment to detect high similarities in two
proteins by using Real-coded GA. This new ap-
proach can resolve above-mentioned problems,

that is, a global search can be realized and put
much more importance on conserved and active
sites with a effective fitness function.

In section 2 the alignment problem is defined
and briefly review what the existing algorithms
are. In section 3 GA for GSA is designed as
the function optimization problem and also perfor-
mances are observed with experiments. In section
4 the results of GSA are summarized with experi-
ments. In section 5 it is reported that GSA found
a new alignment pattern. Furthermore, an idea
for the multiple structural alignment by suggested
GSA is described in section 6.

2 Preliminaries

This section first explains the definition of the
alignment problem in two proteins, which is called
the pairwise alignment, and then surveys the ex-
isting algorithms of it briefly.

2.1 Definitions of Alignment

Problem

2.1.1 Sequence Alignment

In protein evolution, the mutations as an insertion
or deletion are denoted by ‘–’, which is called gap.
Suppose the followings are given in this problem:

• A fixed set of characters(corresponding to the
20 amino acids)

∑
has no gap, and also a set∑′ has a gap.

• Let s and s′ be a member of
∑

and
∑′, re-

spectively.

• If Seqk is a sequence, then we denote Seqk =
(sk1, sk2, . . . , skl) with s, where k indicates
the kth sequence, l is the length of the se-
quence.

Seqk contains at least one character. We denote
an aligned sequence Seq′

k = (s′k1, s
′
k2, . . . , s

′
kl) with

s′ obtained from Seqk. The sequence alignment is
defined as a transformation that satisfies the fol-
lowing properties:

Def. 1

Seq1 = (s11, s12, . . . , s1m)

Seq2 = (s21, s22, . . . , s2n)

Seq′
1 = (s′11, s

′
12, . . . , s

′
1l)

Seq′
2 = (s′21, s

′
22, . . . , s

′
2l)
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i. n ≤ l ≤ (m+ n)

ii. Seq1 = Seq′
1 − GAP �= ∅

iii. Seq2 = Seq′
2 − GAP �= ∅

iv. If Seq′
1 = (. . . , s1i, . . . , s1j , . . . , s1l), then

i < j < l

v. If Seq′
2 = (. . . , s2i, . . . , s2j , . . . , s2l), then

i < j < l,

where ‘Seq′
1−GAP’ means removing gaps from se-

quence. m, n, and l are lengths of sequences(m ≤
n), respectively.

2.1.2 Structural Alignment

In the structural alignment, we use a vector of
atom instead of a character. Let ev be a vector of
the position of Cα atom. The backbone with Cα
atoms is used in most alignment algorithms. When
two backbones were compared, they had been su-
perposed in three-dimensional space. Then the se-
quence alignment would be obtained with these
geometric positions.

The Stck is given as the kth structure which
consists of elements evki for (1 ≤ i ≤ m), where m
is the number of Cα atoms at the structure. The
structural alignment is defined as a transformation
of the first structure, e.g. Stc1, that satisfy the
following properties:

Def. 2

Stc1 = (ev11, ev12, . . . , ev1m)

Stc2 = (ev21, ev22, . . . , ev2n)

Stc′ = (ev′1, ev
′
2, . . . , ev

′
m)

i. Stc′ = R× Stc1 + t

ii. C = {c1, c2, . . . , ci, ci+1, . . . , cz}
iii. If ci = {ev′j , ev2k}, then

ci+1 = {ev′j′ , ev2k′}
(j′ > j, k′ > k)

iv. 1 ≤ z ≤ m.

where Stc′ is an alignment, R is a rotation ma-
trix, t is a vector of translation, and C is a set of
equivalent atoms. The z became a matched length
M .

2.2 Previous Works

2.2.1 Root Mean Square Deviation

In General, the root mean square deviation
(RMSd) has been used as a measure of structural
similarity in molecular biology. From now on, the
RMSd means the average of square distances of
all equivalent atoms and the RMS-fitting means
the transformation in three-dimensions. For the
defining RMSd, we use symbols in Def.2. RMSd
is defined by

drmsd(C) =
min

T

√√√√1
z

z∑
i=1

‖T (ci1) − ci2‖2, (1)

where the minimum is taken from all transforma-
tion T , and T is denoted by R × ci1 + t. ci1 and
ci2 indicate ev′j and ev2k in Def.2(iii), respectively.
Since t = O(O is the zero vector), for instance, R
can be computed in O(z) times as the following:

R = (AtA
1
2 )A−1. (2)

Here A is a matrix with Aij =
∑z

k=1(ck1)i(ck2)j ,
At is the translation matrix, and A

1
2 × A

1
2 = A,

A−1 is the inverse matrix. Although a set C must
be established before performing the equation(1),
this problem is avoided with the dynamic program-
ming.

2.2.2 Dynamic Programming
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Figure 2: Dynamic Programming

The dynamic programming is a general method
used to find the optimal alignment. The basic
principle for alignment is either to maximize the
number of M between the two proteins or to min-
imize the number of mismatched atom pairs, i.e.
the number of gaps. Figure 2 shows the alignment
of two short sequences. The arrows in Figure 2 be-
come the maximum-match pathway. In this case,
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pathway consists of three diagonal steps and five
horizontal or vertical steps. The diagonal step in-
dicates where the characters matched in two se-
quences. Also, the horizontal and vertical arrows
signify insertions of gaps. The gap penalty fac-
tor could be a function of the size and direction of
the gap. As such, the algorithm is defined by the
following recurrence equation:

Sij = Max{
Si−1,j−1 +Dij ;

Si,j−1 + g;

Si−1,j + g;

}, (3)

where S is any element in the matrix of dynamic
programming, D is a score matrix and g is a gap
penalty. However, This is not the case for the se-
quence alignment. This D can be converted into a
similarity matrix s in the structural alignment by
application of the following formula:

sij = f(distij). (4)

Where sij and distij are similarity and distance
between ith atom in the first structure and jth
atom in the second one. In the dynamic program-
ming, it requires memory space for a k-dimensional
array and calculation time in the k-th power of the
number of atoms, where k is the number of pro-
teins.

2.2.3 Existing Algorithms

Recently there has been an explosion of methods
for the structural alignment. Rossmann,M.G. et
al. proposed an iterative improvement method
by using RMSd. Taylor,W.R. and co-works de-
veloped the SSAP(sequential structure alignment
program), where are sequence alignment tech-
nique is applied. Gerstein,M. et al. are study-
ing an iterative dynamic programming, it in-
cludes the Monte Carlo method(YSAS,yale struc-
ture alignment server). Holm,L. et al. have
been proposed a new algorithm, which is based
on the combination of distance matrix and Monte
Carlo method. Akutsu,T. applied bipartite
graph matching method, which is called Stralign.
Madej,T. et al. proposed a new algorithm by a
comparison of pairs of secondary structure ele-
ments (SSE’s). These existing algorithms provide
the most important databases of proteins for bi-
ologists, e.g. CATH (class architecture topology
homology), SCOP (structural classification of pro-
teins), DALI (distance matrix alignment), etc.

These algorithms fall into two categories, the
iterative superposition and the Monte Carlo op-
timization. In the iterative superposition algo-
rithms, DP-matching technique is used to iden-
tify the best align atom pairs, and RMS-fitting
is adopted to rotation and translation. Al-
though they are very fast, the result is aligned
roughly when the complexity of structures is
increased[Gibrat 96]. This problem can be caused
by their local search that ignored variation of ro-
tation angles and transfer positions. The Monte
Carlo algorithms iteratively explore a series of
shifts in the alignment of each fragments and ex-
tension by addition of new aligned atom pairs.
They are also adopted DP-matching and RMSd.

However, RMSd is unclear that either is bet-
ter than the other. Furthermore, the criterion by
RMSd will failed to align functional sites of pro-
teins. That is, RMS-fitting rotates the structure
in average of spatial positions.

3 Genetic Structural

Alignment(GSA)

In this section, a novel alignment algorithm by the
name of GSA is proposed with experimental re-
sults. The ‘Genetic’ in GSA means that is greatly
inspired by genetic phenomena in nature.

3.1 Approach

Real-coded GA is adopted as the core of GSA al-
gorithm. GA is fit for the structural alignment in
several points. First, GA can compare structures
in possible spatial positions, i.e. a global search
can be realized by populations. Second, although
the complexity of structure was increased, with
GA a higher precision can be obtained. Third,
flexible object function can be designed. In ad-
dition, we can construct a fitness function which
includes means of atom pairs.

In this thesis, the structural alignment is ad-
dressed as a function optimization problem to
maximize the fitness function f . A chromo-
some is designed by six-dimensional real num-
bers. Crossover operator and generation alterna-
tion model is adopted UNDX (unimodal distribu-
tion crossover)[Ono 97] and MGG (minimal gener-
ation gap)[Satoh 96, Yamamura 97], respectively.
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Figure 3: Generate Method for Initial Population

3.2 Design for GA

3.2.1 Encoding

When we considered that we would explore in
three-dimensional geometric spaces, we can repre-
sent an individual INDIk by six parameters real
numbers, i.e. three rotation angles and three-
dimensional translation vector of the first atom.
Figure 1 shows a generating method for evk1 in
an initial population. Stc1 is moved to the origin
in the first step. Next step, ev1m and ev21 are
connected, and then we can determine a possible
individuals space, presented as a box(min(x, y, z),
max(x, y, z)) in Figure 3. Then an initial popula-
tion is generated in this box, while an individual
INDIk is rotated in which a fixed evk1 is the ori-
gin. We can represent possible positions that the
existing methods have never considered. A chro-
mosome in an initial population could be encoded
with α, β, γ, and x, y, z as defined by:

−π ≤ (α, β, γ) ≤ +π

min x ≤ x ≤ max x

min y ≤ y ≤ max y

min z ≤ z ≤ max z. (5)

3.2.2 Crossover and
Generation Alternation Model

We employed UNDX as a crossover operator, it
is a powerful crossover method in characteristics
preservation. Using normal distribution UNDX
generates six-dimensional real numbers for two
children in a determined area with three parents.
In regard to rotation angles, we use complemen-
tary angles because 2π presents an equivalent po-
sition in geometric spaces. The complementary
angles are defined by a narrow angle between two
parents who have a difference angles more than
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Figure 4: Estimate of Equivalent Atoms

π.And the MGG is adopted as a generation alter-
nation model.

3.2.3 Mutation

Two individuals, who have survived in MGG, are
likely to be mutated in a mutation probability.
When we assume that INDIk is mutated, the mu-
tation procedure is described as follows:

• randomly select an atom ev2r in Stc2

where r is a position of selected atom.

• evk1 is superimposed on ev2r by force.

• INDIk is rotated with α = π, β = 0, γ = 0.

3.2.4 Fitness Function

The estimate of equivalent atoms is required for
evaluation of individuals. As shown in Figure 4,
we compute distances between each atom in the
INDIk and every atom in the Stc2(exception of
determined atoms). When we found the nearest
atom pair(i,j), we check their distance distij . If
dist2ij ≤ δ then, added to a set of equivalent pairs,
illustrated as in Figure 4. If dist2ij > δ then,
it becomes a gap, illustrated as © in Figure 4.
Where δ is a constant for the gap.

For a member ci(a, b) of C = {c1, c2, . . . , cz} (see
Def.2), let distci

be ‖a − b‖. And g = m − z for
a gap penalty, where m is the length of INDIk.
Hence we define the fitness function f as follows:

s =
z∑

i=1

exp(ε× dist2ci
)

f =
s+ 1.0
g + 1.0

, (6)

where ε(< 0) is a constant for the similarity. In
an ideal α-helix, each amino acid residue keeps
1.54Å(1Å=0.1nm), i.e. the distance of Cα–Cα
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bond. In contrast, each residue in β-strand ac-
counts for 3.2–3.4Å. Thus, δ is taken 5.0(approxi-
mately 2.242), which is a midway value in the dis-
tances of Cα–Cα bonds. The ε has an important
effect in this fitness function f . That is, the dis-
tance between a pair of atoms is reflected their
similarity by ε (see Figure 5).

The conserved and active sites in similar pro-
teins should locate in a close geometric position.
The fitness function f is designed to realize a spe-
cial emphasis on such the important sites. We can
find the other functions for this approach. GA has
adaptability, one of features, to any function. This
flexibility in GA is an advantage over the other
methods.

In section 4 we determine ε with experiments.
The ε resembles the ‘Enzymes’, which are ex-
tremely effective as biological catalysts. In the
fitness function f , ε might act on closely located
atom pairs(ε is an initial letter of the ‘Enzyme’).

3.3 Experimental Results

In order to observe the behavior of designed GA,
the comparison with two sets of proteins are per-
formed as follows.

3.3.1 Materials

For the parameters in the experiments we assumed
that the population size was 50 and the number of
applying crossovers was 100, the generation size
was 3000. α and β in the UNDX were set to 0.5
and 0.3, respectively. These parameters were fixed
in this thesis. The mutation operator was not used
in this experiment in order to confirm the effective-
ness of the proposed encoding and the crossover.
For the time being, ε is set to -0.5 arbitrarily.
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Figure 6: Distribution of All ev11(1ecd vs. 1mbs)

The test case for this experiment was pre-
pared from PDB 1 [Berman 00] as shown in Ta-
ble 1. Two sets of proteins are used, myo-
globin(PDB code:1mbs) and hemoglobin(PDB
code:1ecd), which have a high structural simi-
larity, and ubiquitin(PDB code:1ubq) and ferre-
doxin(PDB code:4fxc) with low one, see attached
papers pp18-19.

All experiments have been done using SUN UL-
TRA SPARC–296Mhz workstation, and GA was
implemented C language. The response time for
the pair of 1mbs and 1ecd is approximately 2200
seconds.

3.3.2 Results

Encoding and Crossover,
Generation Alternation Model

First of all, 1ecd and 1mbs are used as the test
case. Stc1 and Stc2 are determined by length of
structures, 1ecd and 1mbs consist of 136 and 153
residues, respectively. 1ecd became Stc1 because
the length of 1ecd is shorter than 1mbs. Figure 6
shows all the generated individuals by GA, as dot-
ted with ev11. The optimal superimposed position
is known from their conformations. This position
became the focus of searches as shown in Figure 6.

To observe the rotation angles, a comparative
experiment is performed where two children are
generated with complementary angles and non-
complementary angles. These behaviors can be
represented with the positions of ev12, because
they are rotated in a fixed ev11 as the origin. Fig-
ure 7(a) and Figure 7(b) show the distribution of
all individuals generated with two different angle
systems. Although two systems had no peculiari-

1PDB : Protein Data Bank(http://www.rcsb.org/pdb/)

Proteins are identified by their 4 character PDB codes.
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ties, their fitness curves, as shown in Figure 8(a)
and Figure 8(b), indicated a gap in initial genera-
tions.

When GA is performed with high structural
similarity proteins, this gap deserved to pay no
attention. However, the extend of this gap is
increased when we compare with the low simi-
larity proteins(see Figure 8(b)). In other words,
the complement angle system is possible to effec-
tively search in limitative generation sizes. Figure
9 shows the results of 10 trials with the comple-
mentary angles. The MGG is deduced from these
consequences that it succeeded in the maintaining
a diversity of population.

Fitness Function

In Figure 8 and Figure 9, the average of fitness
fluctuates where the nearest of best fitness curves
in the letter of generations. The number of gaps g
will increases by crossover between great closely in-
dividuals, because the distance of equivalent atoms
can be taken longer than δ. For this reason, the
average of fitness never converged into the best
fitness with this degree of generation sizes. How-
ever, it gives a chance of improvement to a best
individual, from the viewpoint of evolutional com-
putation. The interaction between sum of simi-
larities s and the number of gaps g in the fitness
function is represented in Figure 10, the genera-
tion is proportional x axis. As shown in Figure 10,
there are several lines, called evolution roots. The
broken evolution roots are local minima and the
efficiently UNDX are reconfirmed by these roots.
Furthermore, there are no great variations of g in
the latter of generation, and the gap penalty is
stricter with a fitness of individuals there.

Moreover, the exponential curves indicate the
effects of s with the exponential function. The s
is a powerful function that the closed pairs is con-
served into individuals. In contrast, the existing
methods by RMSd attach importance to the aver-
age of square distances. Due to such as transfor-
mation by RMSd, the nearest pair in the biologi-
cal conserved and active sites becomes a senseless
atom for the protein.

3.4 Summary of Experiments

In this section, GSA was proposed with experi-
mental results. The structural alignment problem
was considered as a function optimization prob-
lem. Then, the new encoding method and the fit-
ness function f were applied for GSA, and they
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Figure 10: Distribution of All Individuals Fitness
(1ecd vs. 1mbs)

have been confirmed by investigation of experi-
ments.

4 Experimental Results of

GSA

The ε determined has not yet been fully consid-
ered. In this section, the reasonable ε is found
by experimental results. Then it is compared that
the proposed GSA in section 3 and the other meth-
ods. The other test proteins are prepared not to be
partial in conformation of proteins. Furthermore,
the results of experiments and response times are
shown in this section.

4.1 Materials

The globin proteins in Table 1 are typical of
the globular proteins. Their functions are known
completely[Moran 94]; myoglobin was the first
protein to have its tertiary structure determined.

Oxygen binds to the heme prosthetic group,
in the hemoglobin and myoglobin. However,
hemoglobin, which transports oxygen in the blood
of vertebrates, is a tetramer: myoglobin, which
stores oxygen and facilitates its diffusion within
muscle, is a monomer. Myoglobin accounts for
about 8% of the total protein in the muscles of
diving mammals, such as seals and whales can
store large amounts of oxygen by myoglobin. Leg
hemoglobin, a monomeric protein found in legu-
minous plants, has a structure much the same
as mammals myoglobin. The interior of globin
molecule is composed almost entirely of nonpolar
residues, with the exception of two Histidines(H:
One-letter code) , the 64th and 93rd residues in
the case of myoglobin. These exceptional residues
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Table 1: Test Proteins:Globin Proteins And Low Similarities Proteins

PDB code Residues Source Compound Classification

1ecd 136 Chironomous Thummi Thummi Hemoglobin Oxygen Transport

4hhbA 141 Human(Homo Sapiens) Hemoglobin Oxygen Transport

1bijA 141 Homo Sapiens Hemoglobin Oxygen Transport

1rvwA 141 Homo Sapiens Hemoglobin Oxygen Transport

2hheA 141 Human(Homo Sapiens) Hemoglobin Oxygen Transport

1hhoA 141 Human(Homo Sapiens) Hemoglobin Oxygen Transport

1fdhA 141 Human Fetus(Homo Sapiens) Hemoglobin Oxygen Transport

1habC 141 Homo Sapiens Hemoglobin Oxygen Transport

1bz0C 141 Homo Sapiens Hemoglobin Oxygen Transport/Storage

1cohC 141 Human(Homo sapiens) Hemoglobin Oxygen Transport

1babA 143 Human(Homo Sapiens) Hemoglobin Oxygen Transport

1hgbC 146 Human (Homo Sapiens) Hemoglobin Oxygen Transport

1mbs 153 Common Seal(Phoca Vitulina) Myoglobin Oxygen Transport

5mbn 153 Sperm Whale(Physeter catodon) Myoglobin Oxygen Storage

1hsy 153 Horse(Equus Caballus) Myoglobin Oxygen Transport

1hrm 153 Horse(Equus Caballus) Myoglobin Oxygen Transport

1wla 153 Equus Caballus Myoglobin Oxygen Transport

1xch 153 Equus Caballus Myoglobin Oxygen Transport

1yma 153 Horse(Equus Caballus) Myoglobin Oxygen Transport

2gdm 153 Lupinus Luteus L. Leghemoglobin Oxygen Transport

1lh3 153 Yellow Lupin(Lupinus Luteus L) Leghemoglobin Oxygen Transport

1lh1 153 Yellow Lupin(Lupinus Luteus L) Leghemoglobin Oxygen Transport

2lh1 153 Yellow Lupin(Lupinus Luteus L) Leghemoglobin Oxygen Transport

1gdj 153 Yellow Lupin(Lupinus Luteus L) Leghemoglobin Oxygen Transport

1ubq 76 Human (Homo sapiens) Ubiquitin Chromosomal Protein

4fxc 98 Spirulina Platensis Ferredoxin Electron Transport

(Capital Character ‘A’ in PDB code : Chain ‘A’)

are important functional units of globin proteins,
i.e. the heme plane is flanked by the 64th Histidine
and the 93rd one. Moreover, the 43rd Phenylala-
nine(F) and the 68th Valine(V) contribute to the
hydrophobic environment of the oxygen-binding
site.

GSA is compared with YSAS2 and Stralign3,
which are an iterative improvement methods.
YSAS includes a combination of the DP-matching
and the Monte Carlo method. It provides real-
time alignment on the Internet. On the other
hand, using a bipartite graph matching technique
instead of DP-matching in Stralign(δ = 5.0, 15
fragment length and 100 maximum test times).

Here, the new symbols described in Table 2, ac-
curacy symbols, represent the aligned accuracies.
These symbols can denote close atom pairs, par-
ticularly in ∗ and | ,#. Their distances set on
about 0.7Å steps. It is extremely interesting how
many atom pairs are there within about 1.22Å.

2http://bioinfo.mbb.yale.edu/Align/
3http://www.hgc.ims.u-tokyo.ac.jp/service/tooldoc/

stralign/intro.html

Table 2: Accuracy Symbols

no. symbol dist2ij

1 empty > δ(gap)
2 · > 1.5 and different character
3 : > 1.5 and same character
4 ∗ ≤ 1.5
5 | ≤ 1.0
6 # ≤ 0.5

Thus these accuracy symbols can show the biolog-
ical active sites.

The mutation operator described in section 3 is
used with 0.01 mutation probability.

4.2 Estimate ε

The ε in fitness function f can quicken detection of
higher numbers of the close atom pairs. In other
words, the involvement with distance and similar-
ities of two atoms is determined by ε. As shown
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Figure 11: Typical Reactions of ε

in Figure 5, if a weaker value is taken (towards
nearly zero), it might never reflect close pair of
atoms to the fitness function f . It might evaluate
only nearer atom pairs and these atoms are con-
served in individuals when ε was a stronger value
(negative direction). Figure 11 shows typical ε re-
actions against aligned results, i.e. the number of
M in Figure 11(a) and the number of # in Fig-
ure 11(b). In the case of easy structural alignment
(1ecd vs. 1mbs), we can obtain a staticM with the
exception of one ε. Also, we can observe the pro-
portional number of # with force of ε. However,
they fluctuated in stronger ε values when the com-
plexity of structure(1ubq vs. 4fxc) was increased.

The GSA has purposes that detect higher num-
bers of # and realize the global search indepen-
dent to the specific structures. Therefore, we have
to take the highest # points in two curves, i.e. ap-
proximately −2.0 and −0.8 in Figure 11(b). How-
ever, it is taken appropriate −0.8 as the ε in con-
sideration of the number of M .

4.3 Results

4.3.1 Response Times

The experiments used 15 pairs of globular pro-
teins; globin family and 10 pairs of complex confor-
mations proteins. All experiments ran on a SUN
ULTRA SPARC-296Mhz workstation. Figure 12
shows the response times in these experiments, x
axis is averages of lengths of two proteins and y
axis is the response times.

4.3.2 Easy Structural Alignment

In this experiment, the globular proteins (Table 1)
are compared by YSAS, Stralign, and GSA. Table
3 shows the results of structural alignment. In ad-
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Figure 12: Response Times

dition, the accuracy of results can represent with
distances of equivalent atoms. Figure 13 shows
that their aligned patterns are similar to the bi-
ological conserved sites of myoglobin(1mbs). the
64th and the 93rd Histidines, the heme is flanked,
have # symbols in three different methods. It
was confirmed that the 87th Histidine residue of
hemoglobin (1ecd), the heme is bonded, was also
closely connected with myoglobin, the figure is
omitted.

4.3.3 Harder Structural Alignment

Over three-quarters of residues of a globular pro-
tein are in the α-helix. Thus, RMS-fitting method
can align well. New test proteins are prepared not
to be partial in conformations. They consist of α-
helices and β-sheets combinations or only β-sheets.
The results of structural alignment are described
in Table 4.
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4.4 Discussion

As shown in Table 3, there are no wide differences
between three different methods. We cannot dis-
tinguish that either is higher in accuracy with the
number of # andM or the sum of ‘∗ + j + #’. It is
possible to find a good method in Table 4. In other
words, using the RMSd and DP-matching meth-
ods are adequate to compare between the simplest
conformation proteins. However, their accuracies
deteriorate into ‘not make any importance to func-
tions of protein’ when they are compared with
complex structures. The number of ‘ · ’ and ‘ :
’ of YSAS and Stralign in Table 4 are higher than
GSA. These symbols are senseless to the biological
important sites, because they imply distant posi-
tions of equivalent atoms. Thus, it is appreciated
that the existing methods fail to catch the nearest
pair of atoms. In contrast, GSA makes a success
of detecting high structural similarity pairs with
independence on the conformations. Furthermore,
GSA found a novel structural alignment in Ca2+-
binding proteins, complex conformation proteins.

5 Ca2+-binding Proteins

3ICB and 5CPV(3ICB, intestinal Ca2+-binding
protein; 5CPV, carp parvalbumin) have binding
sites for two calcium ions. The 14th to 27th and
the 54th to 65th residues(EF-hand) in 3ICB are

Ca2+ binding sites, the 51st to 62nd (CD-hand)
and the 90th to 101st residues(EF-hand) in 5CPV,
respectively. There exist EF-hands common to
two proteins, that is, the results of structural align-
ment must detect the EF-hand active sites.

As shown in Figure 14, the alignment results of
YSAS and Stralign indicate that there are many
conservational residues in calcium-binding sites.
However, GSA obtained an aligned pattern dif-
ferent from the other methods. It indicates that
the EF-hand sites are similar in both structures
much more than YSAS and Stralign. The simi-
larities of CD-hand are also maintained. The first
atom Lysine, senseless atom for Ca2+-binding pro-
teins, corresponds to different atom from YSAS
and Stralign. We can deduce from this fact that
GSA efficiently generates and rotates a structure
as a rigid body. The positions of Lysine and re-
sults of structural alignments are shown in Figure
15.

6 Multiple GSA

It is generally believed that the prediction of an an-
cestral protein from given sets of proteins can find
extremely significant biological knowledge. The
effective and utilize methods have not been devel-
oped because of harder degree of difficulties.

The GSA can treat given proteins as a pop-
ulation, i.e. considering a protein as an indi-
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Table 3: Results of Easy Structural Alignment

pair method RMSd M · : ∗ | #

1babA 1bz0C YSAS 4.43306 142 0 0 1 2 139

Stralign 0.25993 141 0 0 1 1 139

GSA 0.26556 141 0 0 1 4 136

1fdhA 1cohC YSAS 0.32632 142 0 1 0 4 137

Stralign 0.31406 141 0 1 0 4 136

GSA 0.31499 141 0 1 0 4 136

1rvwA 1habC YSAS 0.40772 142 0 0 2 4 136

Stralign 0.37769 141 0 0 2 4 135

GSA 0.37972 141 0 0 2 3 136

2hheA 1hgbC YSAS 0.35693 142 0 0 0 6 136

Stralign 0.33632 141 0 0 0 5 136

GSA 0.33787 141 0 0 0 6 135

1bijA 1hhoA YSAS 0.57296 124 0 0 2 14 108

Stralign 0.82160 136 3 7 5 12 109

GSA 0.61952 134 0 7 6 13 108

4hhbA 5mbn YSAS 7.33431 136 44 15 12 26 39

Stralign 1.44108 140 43 16 16 27 38

GSA 1.28604 130 36 14 20 21 39

1mbs 5mbn YSAS 1.40223 144 12 48 23 34 27

Stralign 1.48817 149 15 53 15 37 29

GSA 1.25917 138 18 41 21 31 27

4hhbA 1mbs YSAS 6.92031 135 61 21 11 23 19

Stralign 1.74165 136 62 20 11 25 18

GSA 1.49387 122 53 19 18 13 19

1hsy 1lh3 YSAS 2.31578 140 78 9 19 18 16

Stralign 2.26041 138 88 14 9 18 9

GSA 1.40499 103 48 6 15 17 17

1yma 1lh1 YSAS 2.38389 140 80 10 20 17 13

Stralign 2.26061 138 91 14 7 16 10

GSA 1.43810 105 48 8 14 16 19

1wla 2lh1 YSAS 2.67754 142 87 15 13 15 12

Stralign 2.25637 138 87 15 9 18 9

GSA 1.45423 111 52 7 10 21 21

1ecd 1mbs YSAS 2.16801 137 83 20 13 11 10

Stralign 1.96364 133 81 19 13 14 6

GSA 1.57554 111 59 17 11 16 8

1hrm 2gdm YSAS 2.17660 138 71 13 16 28 10

Stralign 2.23722 140 103 15 5 11 6

GSA 1.39203 108 47 6 12 22 21

1ecd 4hhbA YSAS 7.78449 125 79 13 8 15 10

Stralign 2.22607 129 92 20 8 3 6

GSA 1.49441 96 50 3 8 17 18

1xch 1gdj YSAS 3.03139 148 95 16 16 15 6

Stralign 2.18654 140 81 14 17 15 13

GSA 1.40113 112 46 5 12 34 15

Stralign:Fragment Length= 15, δ = 5.0, Maximum Test Times= 100

GSA:Population= 50, Crossover Times= 100, Generation= 3000,

Mutation Prob.= 0.01, UNDX(α = 0.5, β = 0.3), δ = 5.0,ε = −0.8
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Table 4: Results of Harder Structural Alignment

pair method RMSd M · : ∗ | #

1b11 1idaA YSAS 0.98733 91 12 1 5 25 48

(113 99) Stralign 2.09623 98 63 10 9 10 6

GSA 0.97205 93 19 1 5 10 58

1buhB 1cksB YSAS 0.47447 52 0 0 0 7 45

(70 78) Stralign 2.60051 25 20 1 2 2 0

GSA 0.63509 56 0 3 2 6 45

3icb 5cpv YSAS 4.51080 57 23 12 4 10 8

(75 109) Stralign 1.77822 58 24 11 6 8 9

GSA 1.30172 46 13 6 4 5 18

1ubq 4fxc YSAS 2.80691 65 47 2 7 6 3

(76 98) Stralign 2.81187 64 46 4 5 6 3

GSA 1.25622 37 14 2 5 2 14

2pkaX 1hvrB YSAS 3.74044 53 44 5 1 2 1

(80 99) Stralign 2.44886 30 24 5 0 0 1

GSA 0.96766 22 5 0 2 3 12

1tig 1xvaA YSAS 2.66371 77 54 5 10 5 3

(88 292) Stralign 2.44049 75 54 6 5 6 4

GSA 1.45020 38 19 1 2 6 10

1vscB 1bp3B YSAS 8.08298 165 151 13 1 0 0

(196 197) Stralign 3.01190 87 74 2 6 5 0

GSA 1.01278 25 5 0 3 7 10

1ytfC 7rsa YSAS 5.45598 40 33 3 3 1 0

(46 124) Stralign 2.87897 38 28 1 5 3 1

GSA 1.40295 24 9 2 3 1 9

1az5 1ang YSAS 4.27268 65 58 2 4 1 0

(95 123) Stralign 2.97083 55 52 1 0 2 0

GSA 1.21145 16 6 0 2 1 7

1kul 1ttaB YSAS 3.19986 70 61 6 2 1 0

(108 127) Stralign 2.91203 70 52 8 2 6 2

GSA 1.04946 17 4 0 5 2 6

Stralign:Fragment Length= 15, δ = 5.0, Maximum Test Times= 100

GSA:Population= 50, Crossover Times= 100, Generation= 3000,

Mutation Prob.= 0.01, UNDX(α = 0.5, β = 0.3), δ = 5.0,ε = −0.8

vidual. It makes us image an inverse evolution.
This inverse evolution means that current pro-
teins evolve into the past (towards to their an-
cestral protein). For example, Figure 16(attached
paper) shows evolution roots in the comparison
between T4Glutaredoxin and E.coli. There are
stronger local minima and some roots most likely
connected with other proteins. If GSA extended to
MGSA(Multiple Genetic Structural Alignment), it
might shows local minima the same as GSA. Al-
though they are assessed as the negative phenom-
ena in the most optimization problems, these local
minima are applied as the positive phenomena in
MGSA. Figure 17(attached paper) shows an idea
for MGSA in the abstract. An initial population
evolves inversely into the peak. Then, we can ob-
tain a best individual and some local minima (Fig-

ure 17(a)). The best individual can describe the
structure of ancestral protein, because the fitness
function of GSA is designed that it conserves the
emphatic atoms in structures. As such, the phy-
logenetic tree can be constructed by these results
(Figure 17(b)).

However, there exist many problems in this idea.
First of all, what is the effective fitness function?
How can we represent the inverse evolution? When
should we consider to be converged? Therefore, we
must consider these problems as one of the further
works in this thesis.

7 Conclusion

The structural alignment must be considered to
the biological important sites. In this sense, many



Master Thesis: 98m33661 14

YSAS
3icb -------------------------------------KSPEELKGIFEKYAAKEGDPNQL
                                          ::.*..#|.#|... .   |##|
5cpv AFAGVLNDADIAAALEACKAADSFNHKAFFAKVGLTSKSADDVKKAFAIIDQDK--SGFI

3icb SKEELKLLLQTEFPSLLKGPS-TLDELFEELDKNGDGEVSFEEFQVLVKKISQ
     #..::::.  ..          ..|*.#..**..:::.##||||..:|::
5cpv EEDELKLFLQNFKADARALTDGETKTFLKAGDSDGDGKIGVDEFTALVKA---

Stralign
3icb -------------------------------------KSPEELKGIFEKYAAKEGDPNQL
                                          ::.|..#|.#|... ..  *###
5cpv AFAGVLNDADIAAALEACKAADSFNHKAFFAKVGLTSKSADDVKKAFAIID-QD-KSGFI

3icb SKEELKLLLQ-TE-FPSLLKGPSTLDELFEELDKNGDGEVSFEEFQVLVKKISQ
     #..::::. | ..          ..**.#..**..:::.##||||..:*:    
5cpv EEDELKLF-LQNFKADARALTDGETKTFLKAGDSDGDGKIGVDEFTALVK---A

GSA
3icb ---------------------------------------KSPEELKGIFE--KYAAKEGD
                                              .   :  :.   .  .   
5cpv AFAGVLNDADIAAALEACKAADSFNHKAFFAKVGLTSKSADD--VKKAFAIIDQ--D--K

3icb PNQLSKEELKLLLQT-E-FPSLLKGPSTLDELFEELDKNGDGEVSFEEFQ-VLVKKISQ
     ###|#..|::: .|. .          ..*#*##|######*.##|###* . :     
5cpv SGFIEEDELKL-FLQNFKADARALTDGETKTFLKAGDSDGDGKIGVDEFTAL-V---KA

cccccccccc

cccc ffffffffffff

cccccccccc

cccc

cccccc

cccccccc

ffffffffffff

ffffffffffff

ffffffffffff

ffffffffffff

ffffffffffff

cccc  cccc

c cc ccccc

cccc

cccc

cc  c  c

cccccccc

c:CD-hand
f:EF-hand

Figure 14: Accuracies of Three Different Methods : Ca2+-binding Protein(3icb vs. 5cpv)

C

EF-handEF-hand

k
N

C

C

C

N
N

N k

CD-handCD-hand

N : N terminus
C : C terminus
k  : Lysine

YSAS and Stralign GSA

calcium binding 1 : 14 - 27
calcium binding 2 : 54 - 65  ( EF-hand  )
calcium binding 1 : 51 - 62  ( CD-hand )
calcium binding 2 : 90 - 101( EF-hand )

black line : 3icb

gray line  : 5cpv  

Figure 15: Result of Structural Alignment : Ca2+-binding Protein(3icb vs. 5cpv)



Master Thesis: 98m33661 15

existing methods are inadequate. Using RMSd,
RMS-fitting, and DP-matching are extremely de-
pending on the protein conformations. Such the
iterative improvement approaches cannot find any
novel alignment in complex conformation proteins.
For these reasons, the existing methods have es-
sential problems to their algorithms. First, they
explore only local spaces by RMS-fitting and DP-
matching. Second, RMSd is unclear which is a best
result. Third, the most important active sites, i.e.
for the protein still survives in nature, cannot be
aligned with any combination of these methods.

In this thesis, a novel alignment method GSA
was proposed with several experimental results. It
is confirmed that GSA could be a global search and
fitness function f conserved important sites into
the individuals. GSA is compared with YSAS and
Stralign, traditional methods. From the results
of these tests, we reconfirmed that GSA has the
ability to detect high similarities in two proteins.
In addition, GSA found a novel alignment pattern
within Ca2+-binding proteins.

Nevertheless, the analyses of results in this the-
sis are insufficient. The parameters in fitness func-
tion f have not been fully considered. These
problems and the realization of MGSA are further
works.
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Figure 18: Structure of 1ecd.pdb

Figure 19: Structure of 1mbs.pdb
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Figure 20: Structure of 1ubq.pdb

Figure 21: Structure of 4fxc.pdb


